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Let O/C, O{C, be an open set with simply connected components. In Theorem
1 we prove the existence of a holomorphic function , on O, which has together with
all its derivatives and all its antiderivatives six universal properties at the same time
(based on the behaviour of sequences of derivatives or antiderivatives, overcon-
vergence-phenomena, or properties of translates). In Theorem 2 we show that the
family of all functions with these universal properties is a dense subset of the metric
space H(O) of all holomorphic functions on O, if H(O) is endowed with the usual
compact-open topology. � 1997 Academic Press

1. INTRODUCTION

Throughout this paper we assume that O/C, O{C, is an open set with
simply connected components, i.e., there exists a finite or countable set I
with O=�& # I G& , and the G& are pairwise disjoint simply connected
domains. We suppose that the function , is holomorphic on O (which
means that its restriction to any of the components G& is holomorphic on
G& in the ordinary sense). By H(O) we denote, as usual, the family of all
functions which are holomorphic on O.

If , # H(O) and j # N0 , we denote by , ( j) the derivative of order j, and
if j # N, we use the abbreviation ,(& j) for an (arbitrary but fixed)
antiderivative of order j for ,, i.e., we have

d j

dz j ,(& j)(z)=,(z) for all z # O.

Such a function ,(& j) is also called a j-fold antiderivative for ,. If , (& j)
1 and

,(& j)
2 are both j-fold antiderivatives for ,, then we have

, (& j)
1 (z)&, (& j)

2 (z)=/(z),
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where / is a function whose restriction to any of the components G& is a
certain polynomial /& of degree less than j.

A sequence [,(& j)]j # N is called a ``strict'' sequence of antiderivatives, if
the ,(& j) are antiderivatives of order j for , but satisfy in addition the
stronger assumption

d
dz

,(& j)(z)=,(& j+1)(z) for all j # N and all z # O.

In this paper we deal with the following problem. We fix a function
, # H(O) (or a derivative or an antiderivative), and by applying simple
analytic operations to this function we construct a sequence, which we
associate with ,, and ask for the approximation properties of such a
sequence: What functions on what subsets are obtainable as limits of such
a sequence? We consider several possibilities to make these qualitative
remarks more precise; for instance, we may study the following operations:

(a) We associate with the function , its sequence [,(n)] of
derivatives.

(b) We associate with the function , a (strict) sequence [,(&n)] of
antiderivatives.

(c) We expand the function , in a power series around a point z0 # O

and associate with , the sequence of partial sums of this power series.

(d) We associate with the function , a sequence of ``translates''
[,(anz+bn)], where it is claimed that [bn] tends to a prescribed boundary
point of O, that [an] tends to zero, and that an z+bn # O if z belongs to a
specified subset of C.

It is not immediately clear which approximation properties the sequences
of type (d) have (where we deal with refinements of classical cluster sets).
However, by carrying out operation (a), (b), or (c), the corresponding
sequences only permit the approximation of very natural functions:

The sequence [,(n)(z)] of derivatives may diverge, but if it converges
compactly on O then the limit function . must satisfy .$(z)=.(z) for all
z # O and hence we have .(z)=c&ez in each of the components G& of O.
The same holds for a strict sequence of antiderivatives. If we consider a
power series ,(z)=��

&=0 a&(z&z0)&, then its sequence of partial sums con-
verges compactly to ,(z) in the greatest disk D(z0) around z0 in which ,
is holomorphic and diverges in any point of D(z0)c.

But in any of these cases (a), (b), or (c) we may ask how the situation
changes if we consider a subsequence instead of the total sequence. As a
consequence of our Theorem 1 it will follow that the behaviour of such
subsequences may be quite irregular.
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2. STATEMENT OF THE MAIN RESULT

We start with some notations. By M we denote the family of all compact
subsets B/C with connected complement. For any B # M we denote by
A(B) the set of all functions which are continuous on B and holomorphic
in the interior B1 of B.

If a sequence [ fn] of functions converges to the function f uniformly on
a set S, then we write

fn(z) =O
S

f (z).

If S is an open set and if [ fn] converges compactly to f on S, then we
write

fn(z) #P
S

f (z).

The problems of the existence of so-called ``universal functions'' and their
correspondence with the ``universal approximation'' of functions are classi-
cal. The first example is due to Birkhoff [1], who proved in 1929 the
existence of a universal entire function , with the property that for an
arbitrary entire function f there exists a sequence [`n] with `n � � and
,(z+`n) #P

C
f (z) for n � �.

Since then many papers have dealt with this subject; the approximation
theorems of Runge and Mergelyan are basic tools for the construction of
functions which are universal in a certain specified sense (cf. [21], where
a brief resume� of the history of this topic is given).

Several authors [5, 9�11,13] proved that��far from being a rare
phenomenon��the spaces of certain universal functions are residual sets.

The first (and so far as we know, the only) example of a ``multiply
universal'' function was given by Blair and Rubel [3]. The authors
produced an entire function ,, whose sequence of derivatives [,(n)], a
strict sequence [,(&n)] of antiderivatives, and a sequence of translates
[,(z+`n)] are dense in the space of all entire functions (endowed with the
topology of compact convergence).

The main purpose of this paper is to prove the existence of multiply
universal functions, which are holomorphic on O and have��together with
all their derivatives and all antiderivatives��six universal properties at the
same time. We shall also show (in Section 5) that the set U(O) of all these
multiply universal functions is a dense subset of the space H(O), established
with the topology of compact convergence.

Our main result is the following

Theorem 1. Let O/C, O{C, be an open set with simply connected
components. Then there exists a function ,, which is holomorphic exactly on
O and has the following properties:
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(A) For all B # M, B/O, and all f # A(B) there exists a sequence
[nk] of natural numbers with

,(nk)(z) =O
B

f (z) (k � �).

(B) For all B # M, B/O, and all f # A(B) there exists a suitable
sequence [, (&n)

B, f ]n # N of n-fold antiderivatives , (&n)
B, f for , (depending on B

and f ) such that

,(&n)
B, f (z) =O

B
f (z) (n � �).

(C) There exists a strict sequence [,(&n)] of n-fold antiderivatives
,(&n) for ,, such that for all B # M, B/O, and all f # A(B) there exists a
sequence [nk] of natural numbers with

,(&nk)(z) =O
B

f (z) (k � �).

(Da) There exists a sequence [ pk] of natural numbers with the
following property. Consider a derivative or any antiderivative ,( j) and an
arbitrary z0 # O. Suppose that

,( j)(z) := :
�

&=0

a ( j, z0)
& (z&z0)&

is the power series expansion of ,( j) around z0 ; then the sequence
[� pk

&=0 a ( j, z0)
& (z&z0)&] converges compactly on O. The limit function is the

derivative ,( j) if j # N0 and an antiderivative of order & j if & j # N.

(Db) If O� c{<, then for all z0 # O, all B # M, B/O� c, and all f # A(B)
there exists a subsequence [ pk*] of [ pk] with

:
pk*

&=0

a ( j, z0)
& (z&z0)& =O

B
f (z) (k � �).

(E) For all B # M and all f # A(B), for any derivative and any
antiderivative ,( j) and for all ` # �O there exist sequences [an] and [bn] with
an � 0, bn � `, such that anz+bn # O for all n # N and all z # B with the
property

,( j)(anz+bn) =O
B

f (z) (n � �).

Methods of operator theory are often useful for establishing the existence
of universal elements (see for example [9]). However, due to the generally
complicated structure of disconnected open sets under consideration, it
seems that these methods are not applicable in the present situation. So we
will give an elementary proof of Theorem 1, which essentially uses the
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theorems of Runge and Mergelyan on complex approximation. Although
only rudimentary methods are involved, we will admit that the proof may
be considered as a ``technical tour de force.''

3. AUXILIARY RESULTS

For the proof of Theorem 1 two lemmas are needed.

Lemma 1. There exists an entire function . with the following property.
For all B # M and all f # A(B) there exists a sequence [nk] of natural
numbers with

.(nk)(z) =O
B

f (z).

This result is essentially due to MacLane [15]; see also Blair and Rubel
[2].

We say that a power series ��
&=0 a&(z&z0)& has Ostrowski gaps [ pk , qk]

if pk , qk are natural numbers with the properties

p1<q1� p2<q2� } } } , lim
k � �

qk

pk
=�

and

a&=0 for & # .
k # N

( pk , qk).

Lemma 2. Let the function f be holomorphic in the domain G. Suppose
that the power series of f around a point z0 # G,

f (z)= :
�

&=0

a&(z&z0)&,

possesses Ostrowski gaps [ pk , qk]. Let be given any point w0 # G and
consider the power series expansion of f around w0 :

f (z)= :
�

&=0

b&(z&w0)&,

Then we have

:
pk

&=0

a&(z&z0)&& :
pk

&=0

b&(z&w0)& #P
C

0.

For a proof see Luh [16, Theorem 1].
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4. PROOF OF THEOREM 1.

1. (a) Let I=[1, 2, ...] be a finite or countable set with O=
�& # I G& , where the G& are pairwise disjoint, simply connected domains (the
components of O). For each & # I we choose a sequence [G&, n]n # N of
Jordan domains G&, n having rectifiable boundaries �G&, n , with

G&, n/G&, n+1 /G& for all n # N,

and that for any compact set K/G& there exists an n0 # N such that
K/G&, n0

. We suppose that In :=I & [1, 2, ..., n] and consider the open set

On := .
& # In

G&, n .

For any & # I we fix a point z&* # G&, 1 and define

2& :=dist(z&*, �G&).

If I=[1, ..., N] is a finite set, let zn* :=z*N for all n�N.
We consider the polynomials

00(z)#0; 0n(z)= `
n

&=1

(z&z&*) if n # N.

(b) Suppose that [`&, k]k # N is a sequence of points which is dense
in �G& . For fixed k # N, j # Z, & # I we choose sequences [z&, k, j, n]n # N of
pairwise different points with the properties that for fixed & # I

lim
n � �

z&, k, j, n=`&, k for all j # Z

and

z&, k, j, n # G&, n+1"G&, n for k=1, ..., n and j=0, \1, ..., \n.

Next we choose 0<$n<1�n so small that the closed circles

D&, k, j, n :=[z : |z&z&, k, j, n |�$n]

are pairwise disjoint for & # In ; k=1, ..., n; j=0, \1, ..., \n, and that

D&, n := .
n

k=1

.
| j |�n

D&, k, j, n /G&, n+1"G&, n
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holds. Then we have

Dn := .
& # In

D&, n /On+1"O� n,

and Dn is a compact set with connected complement.

(c) The set O� c=C"O is open, and if it is not the empty set then
there exists a finite or countable set J=[1, 2, ...] such that O� c=�& # J U& ,
where the U& are pairwise disjoint domains. We define Jn :=J &
[1, 2, ..., n]. For any & # J we denote by P& the family of all Jordan domains
which are contained in U& and are bounded by a closed polygon with ver-
tices in U& and which have rational real and imaginary parts. This family
P& is countable; let [H&, n]n # N be an enumeration of P& .

For fixed n # N we consider the collection Hn of all open sets of the type

.
& # Jn

H&, +& where 1�+&�n.

The family H of all these Hn is again countable; let [Hk]k # N be an
enumeration of H. Any such open set Hk consists of a finite number of
pairwise disjoint Jordan domains.

Now let [Qn]n # N be an enumeration of all polynomials with coefficients,
whose real and imaginary parts are rational.

Any n # N has a unique representation of the type

n=\m
2 +++ where m # N, 1�+�m.

We define

Jn=J( m
2 ) ++ :=H+ ,

Tn(z)=T( m
2 ) ++(z) :=Qm&++1(z).

For any Jn we have J� n /O� c and Jn=�Nn
l=1 hl , n with Jordan domains

hl , n (bounded by polygons), which are contained in different components
of O� c. For any of these hl, n we choose a Jordan domain h*l, n with rectifiable
boundary �h*l, n , such that hl, n and h*l, n are contained in the same compo-
nent of O� c, that hl, n/h*l, n and dist(hl, n, �h*l, n)<1�n hold. We define

Jn* := .
Nn

l=1

h*l, n .
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2. According to Lemma 1 there exists an entire function ., such that
the sequence of derivatives [.(n)] is for all sets B # M dense in the space
A(B).

(a) By an inductive procedure we shall construct a sequence
[P+]+ # N0

of polynomials of the type

P+(w)=6+(w) } [0+(w)]*+. (1)

To this end we note that any natural number + has a unique representation
of the form

+=n2+n+m==: (n, m) where n # N, m # Z, |m|�n.

We start our induction by setting

60(w)#1, *0=1, s0=1.

Let be given an n # N and an m # Z with |m|�n; we abbreviate + :=(n, m)
and suppose that the natural numbers

*0 , ..., *+&1; s0 , ..., s+&1

and the polynomials

60 , ..., 6+&1

have already been constructed. By (1) the polynomials P0 , ..., P+&1 also
are well defined. We further assume that for }=0, ..., +&1 a sequence
[P ( j)

} ]& j # N of strict antiderivatives for P} is determined.
We denote by \+&1 the degree of the polynomial 6+&1 and choose the

natural number s+>s+&1 so great that the properties

s+>(+&1)*+&1+\+&1

and

max
O+

|.(s+)(w)&Q+(w)|<
1
2+ (2)

hold (which is possible by Lemma 1). Next we choose a natural number *+

with

*+>(+&1)[(+&1) *+&1+\+&1++&1]. (3)
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We consider a function F+ , which satisfies for & # I+ ; k=1, ..., +; j=0,
\1, ..., \+; and all w # D&, k, j, + the condition

d ++ j

dw++ j F+(w)=Q+ \ 2+
++1

}
2&
$+

} (w&z&, k, j, +)+z&*+& :
+&1

}=0

P( j)
} (w),

and let F*+ be any antiderivative of order ++m=(n, m)+m for the poly-
nomial

Tn(w)= :
+&1

}=0

P (m)
} (w).

According to Runge's approximation theorem there exists a polynomial
r+(w)�0, which satisfies with suitable positive constants =+ , =$+ , ="+ the
following conditions simultaneously:

max
O+

|r+(w)|<=+ } [max
O+

|0+(w)|]&*+&2+, (4)

max
D+ }r+(w)&

F+(w)
[0+(w)]*++2+ }<=$+ } [max

D+

|0+(w)|]&*+&2+, (5)

and if O� c{< we additionally claim

max
Jn*

}r+(w)&
F*+(w)

[0+(w)]*++2+ }<="+ } [max
Jn*

|0+(w)|]&*+&2+. (6)

If for n # N the integer m runs from &n to n we obtain the polynomials
rn2 , ..., r(n+1)2&1 and hence by induction we get the sequence [r+(w)]+ # N0

of polynomials.

(b) For + # N we use the abbreviations

R+(w) :=r+(w) } [0+(w)]*++2+; P+(w) :=
d +

dw+ R+(w)

and obtain with a well-defined polynomial 6+ ,

P+(w)=6+(w) } [0+(w)]*+.

For &+� j # Z we define

P ( j)
+ (w)=

d ++ j

dw++ j R+(w)
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and for j<&+ we choose P( j)
+ so that

d
dw

P ( j)
+ (w)=P( j+1)

+ (w)

holds. We thereby have determined a strict sequence of antiderivatives of
the polynomial P+ .

3. We investigate some properties of the polynomials P+ .

(a) From (4) we obtain for all +>1

max
O+

|R+(w)|<=+ . (7)

Suppose that & # I+ and that G&, +&1 is any of the components of O+&1 , then
for &+� j�s+ and all z # G&, +&1 we have

P ( j)
+ (z)=

(++ j)!
2?i |

�G&, +

R+(w)
(w&z)++ j+1 dw.

Estimating this integral in a straightforward way using (7), and then taking
the maximum for & # I+&1 and &+� j�s+ , we get

max
G&, +&1

|P ( j)
+ (z)|<

1
2+ ,

if =+ has been chosen sufficiently small. Since G&, +&1 was an arbitrary com-
ponent of O+&1 we have

max
O+&1

|P( j)
+ (z)|<

1
2+ for all j with &+� j�s+ . (8)

(b) In a similar way we obtain

max
D+&1

|P ( j)
+ (z)|<

1
2+ for all j with +>| j |. (9)

(c) From (5) we get for + # N

max
D+

|R+(w)&F+(w)|<=$+ . (10)
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For & # I+ ; k=1, ..., +; j=0, \1, ..., \+; and all z with |z&z&, k, j, + |�$+�2
we have

:
+

}=0

P ( j)
k (z)&Q+ \ 2+

++1
}
2&

$+
} (z&z&, k, j, +)+z&* +

=
(++ j)!

2?i |
�D&, k, j, +

R+(w)&F+(w)
(w&z)++ j+1 dw.

Estimating this integral using (10) and then taking the maximum for the
values of & and j under consideration, we get

max
|z&z&, k, j, +|�$+�2 } :

+

}=0

P ( j)
} (z)&Q+ \ 2+

++1
}
2&

$+
} (z&z&, k, j, +)+z&* +}< 1

2+ , (11)

if =$+ has been chosen sufficiently small.

(d) We suppose that O� c{<. From (6) we obtain for +=(n, m)=
n2+n+m with n # N and &m�n�m

max
Jn*

|R+(w)&F*+(w)|<="+ . (12)

Let hl, n be one of the components of Jn , then we have for all z # hl, n

:
+

}=0

P (m)
} (z)&Tn(z)=

(++m)!
2?i |

�h*l, n

R+(w)&F*+(w)
(w&z)++m+1 dw.

We estimate this integral by use of (12) and since n2�+�n2+2n and
l�Nn , we get

max
hl, n

} :
+

}=0

P (m)
} (z)&Tn(z)}<1

n
,

if ="+ has been chosen sufficiently small. Since hl, n was an arbitrary compo-
nent of Jn , it follows for fixed m # Z and all n�|m|

max
Jn

} :
n2+n+m

}=0

P (m)
} (z)&Tn(z) }<1

n
. (13)

4. Let us now consider the polynomial series ��
+=0 P+(z).

Suppose that B is an arbitrary compact subset of O, then there exists an
nB�2 such that B/O+&1 for all +>nB . If j is a fixed integer, (8) yields for
all +>nB+| j |

max
B

|P ( j)
+ (z)|�max

O+&1

|P ( j)
+ (z)|<

1
2+ .
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Since B was arbitrary, it follows that the series ��
+=0 P ( j)

+ (z) converges
compactly on O for any j # Z. Therefore the functions

�(z) := :
�

+=0

P+(z), � ( j)
0 (z) := :

�

+=0

P ( j)
+ (z)

are holomorphic on O. We define the function , by

,(z) :=.(z)+�(z).

5. We consider any compact set B # M with B/O and any function
f # A(B).

(a) According to the theorem of Mergelyan we can choose a
sequence [nk] with nk � � and

max
B

| f (z)&Qnk(z)|<
1
k

.

There exists an nB�2 with B/On&1 for all n>nB . We suppose that
n>nB . It follows from (2) that

max
B

|.(sn)(z)&Qn(z)|�max
On

|. (sn)(z)&Qn(z)|<
1
2n .

For 0�+<n we have sn>+*++\+ and hence we obtain

,(sn)(z)=.(sn)(z)+ :
n&1

+=0

P (sn)
+ (z)+ :

�

+=n

P (sn)
+ (z)

=.(sn)(z)+ :
�

+=n

P (sn)
+ (z).

Since sn�s+ for all +�n we get from (8)

max
B

|,(sn)(z)&.(sn)(z)|� :
�

+=n

max
O+&1

|P (sn)
+ (z)|<

1
2n&1 .

We therefore have ,(snk)(z) =O
B

f (z) which proves assertion (A).

(b) By [19, Theorem 3] there exists a sequence [, (&n)
B, f ]n # N of

n-fold antiderivatives (depending on B and f ), such that

, (&n)
B, f =O

B
f (z) (n � �).

This proves assertion (B).
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(c) By [20, Theorem] there exists a (universal) strict sequence
[,(&n)]n # N of n-fold antiderivatives, such that a subsequence [nk]
corresponds with the given B and f, satisfying

,(&nk)(z) =O
B

f (z) (k � �).

This proves assertion (C).

6. Let any j # Z be given and consider the derivative ,( j) if j�0 or
any antiderivative ,( j) of order | j | if j<0.

Suppose that . ( j)
0 is the derivative or an arbitrary (but fixed)

antiderivative of order | j | for .. Then the function ,( j) may be represented
in the form

,( j)(z)=. ( j)
0 (z)+� ( j)

0 (z)+/j (z), (14)

where /j is a function whose restriction to a component G& of O is equal
to a polynomial /j, & of degree less than | j |. Observe that . ( j)

0 is an entire
function for all j # Z and that /j (z)#0 if j�0.

Let also any z0 # O be given and consider the power series expansion of
,( j) around z0:

,( j)(z)= :
�

&=0

a ( j, z0)
& (z&z0)&. (15)

We shall prove the desired overconvergence properties of this series.

(a) Suppose that Gm0
is the component of O with z0 # Gm0

. We
consider the power series expansions of � ( j)

0 around z0 and z*m0
:

� ( j)
0 (z)= :

�

&=0

c ( j, z0)
& (z&z0)&, (16)

� ( j)
0 (z)= :

�

&=0

c ( j, z*m 0)
& (z&z*m0

)&. (17)

For +>| j | we have

P ( j)
+ (z)=

d++ j

dz++ j R+(z)=
d ++ j

dz++ j (r+(z) } [0+(z)]*++2+)=6j, +(z) } [0+(z)]*+,

with a suitable polynomial 6j, + of degree \+& j�0. For +>| j |+m0 we
have

P ( j)
+ (z)=(z&z*m0

)*+ } `
+

&=1
&{m0

(z&z&*)*+ } 6j, +(z),
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therefore the highest power of (z&z*m0
) in the polynomial P( j)

+ (by its
expansion around z*m0

) has an exponent not greater than +*++\+& j, while
the least power of (z&z*m0

) in P ( j)
++1 has an exponent at least *++1. By (3)

we have

*++1>+[+*++\+++]>+*++\+& j,

and it follows that the power series (17) is obtained (after a starting partial
sum) by writing consecutively the terms of the series ��

+=0 P ( j)
+ (z) (by its

expansion around z*m0
). If we define

pk :=k*k+\k+k, qk :=*k+1 ,

we obtain for sufficiently large k

:
pk

&=0

c ( j, z*m0)
& (z&z*m0

)&= :
k

+=0

P ( j)
+ (z). (18)

And therefore for k � � the partial sums on the left-hand side converge
to � ( j)

0 (z) compactly on O. The power series (17) has Ostrowski gaps
[ pk , qk], which satisfy by (3) the condition qk�pk�k, and it follows from
Lemma 2 that

:
pk

&=0

c ( j, z*m0)
& (z&z*m0

)&= :
pk

&=0

c ( j, z0)
& (z&z0)& #P

C
0. (19)

By (14) and (15) it follows immediately that

:
pk

&=0

a ( j, z0)
& (z&z0)& #P

O
, ( j)(z)+/j, m0

(z)&/j (z) (k � �),

which proves assertion (Da).

7. We assume that O� c{< and that any compact set B # M with
B/O� c, any function f # A(B), a derivative or an antiderivative ,( j), and a
point z0 # O are given. We again consider the power series (15).

If Gm0
is the component of O with z0 # Gm0

, then we have by (14) for all
z # Gm0

,( j)(z)=. ( j)
0 (z)+� ( j)

0 (z)+/j, m0
(z).

We abbreviate f� (z) := f (z)&. ( j)
0 (z)&/j, m0

(z). By Mergelyan's theorem we
can choose a sequence [mk] with mk�k and

max
B

| f� (z)&Qmk(z)|<
1
k

.
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There exists an N with B/�& # JN U& , and the sets B& :=B & U& are empty
or are compact sets in M. It is not hard to show that (if N is chosen suf-
ficiently large) for each & # JN there exists a domain H&, +& with B& /H&, +& ,
i.e., we obtain

B= .
& # JN

B& / .
& # JN

H&, +&

and therefore B/Hl0
for a suitable l0 . We define

nk :=\mk+l0&1
2 ++l0

and get

Jnk=Hl0
and Tnk(z)=Qmk(z).

According to (13), we obtain for all k with nk>| j |,

max
Jnk

} :

n2
k+nk+ j

+=0

P( j)
+ (z)&Tnk(z)}< 1

nk
.

If we define pk*= pn2
k+nk+ j , then we get from (18)

max
Hl0

} :

pk*

&=0

c ( j, z*m0
)

& (z&z*m0
)&&Qmk(z) }< 1

nk
.

By Lemma 2 we conclude

:

pk*

&=0

c ( j, z0)
& (z&z0)& =O

B
f� (z)

and therefore

:

pk*

&=0

a ( j, z0)
& (z&z0)& =O

B
f (z).

This proves assertion (Db).

8. We study the translation properties of � ( j)
0 .

(a) For fixed & # I, k # N, and n>max[&, k, | j |] we have for all
w # G&

� ( j)
0 (w)&Qn \ 2n

n+1
}
2&

$n
} (w&z&, k, j, n)+z&*+

= :
n

+=0

P ( j)
+ (w)&Qn \ 2n

n+1
}
2&

$n
} (w&z&, k, j, n)+z&* ++ :

�

+=n+1

P ( j)
+ (w).
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By (9) we get

max
|w&z&, k, j, n|�$n�2 } :

�

+=n+1

P ( j)
+ (w) }� :

�

+=n+1

max
D+&1

|P ( j)
+ (w)|<

1
2n ,

and together with (11) we obtain

max
|w&z&, k, j, n|�$n�2 }� ( j)

0 (w)&Qn \ 2n
n+1

}
2&

$&
} (w&z&, k, j, n)+z&*+}< 1

2n&1 ,

or equivalently

max
|z&z&*| �(n�(n+1)) 2& }� ( j)

0 \n+1
2n

}
$n

2&
} (z&z&*)+z&, k, j, n+&Qn(z)}< 1

2n&1. (20)

(b) Suppose now that any ` # �G& , a compact set B # M, and a
function f # A(B) are given. We choose an R>0 such that

B� :={z : z=
w
R

+z&* , w # B=/[z : |z&z&* |<2&]

and consider the function f� (z) := f (R(z&z&*)). Then we have f� # A(B� ) and
by Mergelyan's theorem we can find an increasing sequence [nm] with

max
B�

| f� (z)&Qnm(z)|<
1
m

and

B� /{z : |z&z&* |�
nm

nm+1
2&= .

Hence we obtain from (20)

max
B� }� ( j)

0 \nm+1
2nm

}
$nm

2&
} (z&z&*)+z&, k, j, nm+& f� (z) }< 1

2nm&1
+

1
m

�
2
m

. (21)

The point ` is a limit point of the set of all points z&, k, j, nm and therefore
we can find subsequences [ks] and [ms] such that

bs :=z&, ks, j, nms
� ` for s � �.
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We obtain

as :=
nms+1

2nms

}
$nms

2&
}

1
R

� 0 for s � �,

and we have asz+bs # G& for all s # N and all z # B. It follows from (21)
that

max
B

|� ( j)
0 (as z+bs)& f (z)|<

2
ms

and therefore � ( j)
0 (as z+bs) =O

B
f (z) for s � �.

9. We finally study the translation properties of ,( j).

Let a derivative or any antiderivative ,( j), any boundary point ` # �O, a
compact set B # M, and a function f # A(B) be given.

(a) We first assume that there exists an &0 # I such that
` # �G&0

& C. By (14) we have for all z # G&0

,( j)(z)=. ( j)
0 (z)+� ( j)

0 (z)+/j, &0
(z),

where . ( j)
0 is an entire function and /j, &0

is a polynomial. According to the
translation properties of � ( j)

0 there exist sequences [:n] and [;n] with

:n � 0, ;n � ` for n � �,

:nz+;n # G&0
for all n # N and all z # B,

� ( j)
0 (:nz+;n) =O

B
f (z)&. ( j)

0 (`)&/j, &0
(`) for n � �,

which implies ,( j)(:nz+;n) =O
B

f (z) for n � �.

(b) Let us now assume that ` � �G& for all & # I or `=�. Then
there exist sequences [&m] with &m # I and [`m] with `m # �G&m & C such
that `m � ` for m � �. We consider the polynomials /j, &m with /j (z)=
/j, &m(z) if z # G&m . According to the translation properties of � ( j)

0 there exist
for each m # N sequences [: (m)

n ]n # N and [; (m)
n ]n # N with

: (m)
n � 0, ; (m)

n � `m for n � �,

:(m)
n z+;(m)

n # G&m for all n # N and all z # B,

�( j)
0 (:(m)

n z+;(m)
n ) =O

B
f(z)&.( j)

0 (`m)&/j, &m(`m) for n ��.
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For fixed n # N we choose an index nm>m, such that am :=: (m)
nm

and
bm :=; (m)

nm
satisfy the following properties simultaneously:

|am |<
1
m

, |bm&`m |<
1
m

,

max
B

|.( j)
0 (amz+bm)&. ( j)

0 (`m)|<
1
m

,

max
B

|/j, &m(am z+bm)&/j, &m(`m)|<
1
m

,

max
B

|�( j)
0 (amz+bm)& f (z)+. ( j)

0 (`m)+/j, &m(`m)|<
1
m

.

We have amz+bm # O for all m # N and letting m � �, we obtain

am � 0, bm � `,

,( j)(am z+bm) =O
B

f (z).

This proves assertion (E) and finishes the proof of Theorem 1.

5. UNIVERSAL FUNCTIONS IN THE SPACE OF
HOLOMORPHIC FUNCTIONS

We denote by U(O) the set of all multiply universal functions having the
properties (A�E) of Theorem 1, and we deal with the question of whether
it might be considered a normal or nonnormal feature for a function to
belong to U(O).

With the notations in the proof of Theorem 1 we consider the sequence

On= .
& # In

G&, n

of exhausting open sets for the open set O. For a function F # H(O) and
n # N we set

dn(F ) :=max
On

|F(z)|; d(F) := :
�

n=1

1
2n }

dn(F )
1+dn(F )

.

If F1 , F2 # H(O) we define their distance by

d(F1 , F2) :=d(F1&F2).
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The set H(O) established with this metric is a complete metric space, and
for a sequence [Fk] of functions Fk # H(O) we have

lim
k � �

d(Fk , F)=0 if and only if Fk(z) #P
O

F(z).

This shows that d is a ``natural'' metric (which is induced by the compact
convergence) in H(O).

We now compare the subset U(O) with H(O) and prove the following
result.

Theorem 2. Let O/C, O{C, be an open set with simply connected
components. Then U(O) is dense in H(O).

Proof.

1. By Theorem 1 we have U(O){<. Let , be any function in U(O).

(a) Suppose that #{0 is any constant; then it is clear that the
function #, also belongs to U(O).

(b) Suppose that P is any polynomial. We shall prove that the
function ,P :=,+P also belongs to U(O). It is easy to see that ,P satisfies
the properties (A), (Da), and (Db) in Theorem 1; (B) and (C) follow from
[19, Theorem 3] and [20, Theorem ] respectively. Therefore we only have
to verify that ,P satisfies (E).

To this end let any ` # �O, any compact set B # M, any f # A(B), and
j # Z be given. We assume also that , ( j)

P is the derivative of order j if j # N0

or an (arbitrary but fixed) antiderivative of order | j | if & j # N. If & j # N
we further assume that P( j) is a fixed antiderivative of order | j | for the
polynomial P on C (and hence on O), and we may choose the
antiderivative ,( j) for , on O, so that we have

, ( j)
P (z)=,( j)(z)+P( j)(z) for z # O.

(For j # N0 this identity holds trivially.)
We first suppose that `{�. Since the function ,( j) satisfies property (E)

in Theorem 1, there are sequences [an] and [bn] with an � 0, bn � ` for
n � �, such that anz+bn # O for all z # B, n # N, and

,( j)(anz+bn) =O
B

f (z)&P( j)(`) (n � �),

which implies , ( j)
P (anz+bn) =O

B
f (z).

Let us now suppose that `=�. Then we can choose a sequence [`m] with
`m # �O & C and `m � � for m � �. For any m # N there are sequences
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[a (m)
n ]n # N and [b (m)

n ]n # N with a (m)
n � 0, b (m)

n � `m for n � � such that
a(m)

n z+b (m)
n # O for all z # B, n # N, and

,( j)(a (m)
n z+b (m)

n ) =O
B

f (z)&P( j)(`m) (n � �).

For any m # N there is an integer nm>m such that :m :=a (m)
nm

, ;m :=b (m)
nm

satisfy the following conditions simultaneously:

|:n |<
1
m

, |;m&`m |<
1
m

,

max
B

|P( j)(:mz+;m)&P( j)(`m)|<
1
m

,

max
B

|,( j)(:m z+;m)& f (z)+P( j)(`m)|<
1
m

.

It follows that :m � 0, ;m � `=� for m � � and

, ( j)
P (:mz+;m) =O

B
f (z).

This shows that , ( j)
P # U(O).

2. To prove Theorem 2, we have to show: Given any function
F # H(O) and any =>0 then there exists a universal function , # U(O) with
d(,, F )<=.

If we take an arbitrary function ,0 # U(O), then we have limt � 0 d(t,0)
=0. Hence we can choose a constant #>0 so that d(#,0)<=�2.

According to Runge's approximation theorem there exists a sequence
[Pk] of polynomials with Pk(z) #P

O
F(z). Therefore we can find a polyno-

mial P with d(P, F )<=�2. By Step 1 the function

,(z) :=#,0(z)+P(z)

belongs to U(O) and satisfies

d(,, F )=d(#,0+P, F )�d(#,0)+d(P, F )<=,

which proves Theorem 2.
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